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Introduction

Active vision designates the controlled manipulation 
of visual sensors for enhancing visual acquisition 
and perception. Active vision mechanisms can be 
categorized into macro behaviors, associated with 
selective attention and visual search [1, 2], and micro 
behaviors, related to the analysis of a single object of 
interest, such as micro eye saccades or motion parallax 
[3]. This process is stereotypically achieved by eye, 
head and body movements [4–6]. Similarly, the vision 
of autonomous robots may be enhanced via active 
viewpoint manipulation strategies. In this study, we 
focused on the investigation of active vision micro 
behavior in the barn owl: the peering motion. The 
barn owl (Tyto alba) constitutes an excellent model 
system for exploring active vision mechanisms, since 
these birds have very limited eye movements [7, 8]; 
thus, gaze changes may be studied by only recording 
head motions [9]. Compensating for the restricted eye 
mobility, the long and flexible necks of barn owls allow 
them to perform large and elaborate head movements 
while focusing on objects of interest [10–12]. When 
introduced to new environments or before preying, 
barn owls typically exhibit conspicuous side-to-side 
head movements, called peering motions [13, 14]. 
Peering motions occur in various species [15–17], and 

have been shown in some species to mediate distance 
estimation via motion parallax [13, 17–20].

Barn owls have frontally oriented eyes, similar to 
humans but in contrast to most other avian species. The 
resulting binocular overlap allows the birds to use bin-
ocular disparity for depth vision [21]. Barn owls have 
also been shown to exploit motion parallax and to be 
able to transfer depth information from stereo to par-
allax [13, 20]. We used these findings in a biomimetic 
approach to develop a barn-owl-inspired robotic plat-
form equipped with a depth camera and aimed at the 
exploration of active vision strategies to test whether 
the inclusion of barn-owl like scanning strategies would 
improve scanning the performance of a robot.

This study aims at corroborating three research 
hypotheses, stating that peering motions (1) can be 
identified from kinematic analysis, (2) are linked with 
the enhancement of visual perception in barn owls, and 
(3) can improve the scan accuracy of static scenes in 
artificial robotic systems.

Materials and methods

Head tracking
Experiments were made with three adult barn owls (Tyto 
alba) of both sexes. All owls were hatched in captivity, 
and kept in large flying cages. Owls were hand-raised 
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Abstract
Barn owls move their heads in very particular motions, compensating for the quasi-immovability 
of their eyes. These efficient predators often perform peering side-to-side head motions when 
scanning their surroundings and seeking prey. In this work, we use the head movements of barn 
owls as a model to bridge between biological active vision and machine vision. The biomotions are 
measured and used to actuate a specially built robot equipped with a depth camera for scanning. 
We hypothesize that the biomotions improve scan accuracy of static objects. Our experiments show 
that barn owl biomotion-based trajectories consistently improve scan accuracy when compared to 
intuitive scanning motions. This constitutes proof-of-concept evidence that the vision of robotic 
systems can be enhanced by bio-inspired viewpoint manipulation. Such biomimetic scanning 
systems can have many applications, e.g. manufacturing inspection or in autonomous robots.
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from hatching and accustomed to human handling. 
All experiments were approved by the Technion 
Institutional Care and Use of Animals Committee and 
performed in adherence to the NIH Guide for the Care 
and Use of Laboratory Animals. Several weeks before 
the beginning of the recording sessions, owls were 
prepared for experiments in a single surgical procedure, 
in which a holding bolt was cemented to the dorsal 
part of the skull. The owls were allowed to recover for 
about a week after surgery and then acclimatized for 
perching on a small rod, 1.5 m above the ground, with 
the motion capture device attached to the head bolt 
(figure 1(A)). Experiments began once the owls showed 
no behavioral abnormalities carrying the head device. 
During the experiment, each owl was positioned on a 
perch at the center of the laboratory room (6  ×  10  ×  3 
m3, with lights off and faint daylight coming through 
closed shutters). The owl was left alone in the room to 
spontaneously scan the surroundings (figure 1(A)).

The bird’s head kinematics was captured by means 
of a Vicon MX-13 motion capture system [22] by recon-
structing the locations of five markers situated on the 
head-mounted device, at a frequency of 120 Hz and with 
an accuracy of 0.2 mm. The device was screwed into the 
head bolt, so that it formed a rigid body with the owl’s 
head. In addition to the motion capture markers, the 
device also supported a miniature wireless camera for an 
estimation of the bird’s point of interest. The device’s 
weight was minimized to 12 g (including markers, cam-
era and battery pack) and the birds were accustomed to 
wearing the device on a daily basis. Previous studies indi-
cated that similar head-mounted devices did not seem 
to significantly alter the owl behavior [23–25]. A remote 
controlled car with reflective markers attached (identified 
by the Vicon system) was activated at the beginning of the 
experiment for synchronization of the kinematic record-
ings and of the video footages. For the rest of the experi-
ment, the scene was entirely static. From the recorded 
marker coordinates G in the laboratory coordinate sys-
tem, the owl’s head position C and orientation R, hence 
the gaze direction (up to limited eye movements), could 
be estimated from solution of the equation G  =  RL  +  C, 
where L are the known marker coordinates in the device’s 
local coordinate system. After extraction of the side-to-
side peering motions, each trajectory was translated 
and rotated such that its average local system coincided 
with the laboratory coordinate system, for easy replica-
tion on the robotic platform. While three non-aligned 
markers sufficed to determine the instantaneous loca-
tion and orientation of the device, using five markers  
(figure 1(A)) allowed overcoming the occasional track-
ing failure of the motion capture system. The markers 
were placed on the device in an asymmetric manner, 
increasing the variance of the distances separating each 
pair of markers, so that the marker labeling could be 
validated and corrected after the experiments, and small 
gaps could be completed by interpolation. To com-
pensate for reconstruction error and to filter unneces-
sary high frequencies, the location of each marker was 
smoothed over 20 time samples.

Extraction of peering motions
From the long recording sessions, several cues were 
extracted for identification and segmentation of the 
peering motions. First, the peering motions were easily 
recognized by an expert from direct observation of 
the barn owl’s head on the videos. An initial selection 
of peering motions was performed from observation 
of the footages of the head-mounted camera and of 
an additional video camera directed at the bird (see 
supplementary movie 1, available at stacks.iop.org/
BB/12/056004/mmedia). Second, we used the criteria 
proposed by Ohayon et al [18] for the identification of 
peering motion and initially regarded peering motions 
as successions of peering samples, with angular velocity 
below 10° s−1 and linear velocity above 30 mm s−1 
(figure 1(C)). However, in our view, the constraints 
used by Ohayon et al were too stringent, because they 
failed to identify many sequences that seemed to be 
peering motions. For example, in the sequence shown 
in figure 2(C) angular velocity is often higher than 10° 
s−1, although the sequence looks like a peering motion 
upon inspection of the video. Thus, we concluded that 
a further cue was necessary for the segmentation and 
that, after using this cue, the threshold for the angular 
velocity could be relaxed to 20° s−1.

The third cue used for isolation of peering motions 
was the change in gaze direction (figures 2(A) and (B)). 
This criterion allowed identifying successions of peer-
ing motions performed over different objects of inter-
est, separated by quick rotations. This parameter was 
computed as the sinus of the angle (in absolute value) 
between two consecutive gaze direction vectors. Prom-
inent peaks were observed every time the owl turned 
its head. At the same time, no peering motion was 
found entirely embedded in the peering quadrant (e.g.  
figure 2(C)). This criterion thus helped in checking the 
consistency of peering motions. In our hands, the com-
bination of these three peering indications provided an 
accurate and exhaustive extraction of peering segments 
from the long recording sessions.

Recording sessions were conducted with four differ-
ent barn owls while perching and freely observing the 
motion capture laboratory. A summary of the extrac-
tion of head capture and peering motions of three owls 

is presented in table 1.
The owls exhibited recurrent and consistent pat-

terns of movement during the entire recording sessions 
as indicated by the observation of the translational and 
rotational components of the head velocity (figure 3). 
These movements correspond to what has already been 
described by Ohayon et al [18] and, therefore, are only 
described briefly for the sake of completeness here. 
Each owl spent more than half the time (53–63% of the 
samples) resting or fixating. Mixed rotations and trans-
lations constituted 21–25% of the samples. This dem-
onstrated a marked proportional relationship between 
the rotational and translational components. As can 
be seen in figure 3, the highest peaks in velocity were 
reached only in motions simultaneously combining 
great angular and translational velocity components, 
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in line with the composite nature of the ballistic head 
saccades in barn owls [18]. Pure rotations were rarely 
observed (4–5% of the samples). In contrast, in 12–18% 
of the cases, the owls executed high translational speeds 
with low rotational components. These segments cor-
responded to peering movements. The peering move-
ments often consisted not only a of single side-to-side 
movement, but of a sequence of such movements with 
often complex trajectories (see figure 1(B)). Moreover, 
as already described by Ohayon et al [18], translations 
did not only consist of horizontal side-to-side move-
ments, but had additional vertical translational comp
onents (see example in figure 1(B)).

Active vision robot
The active vision robotic platform (figure 4 and 
supplementary movie 2 (available at stacks.iop.org/
BB/12/056004/mmedia)) was designed to include five 
degrees of freedom. The three translational degrees 
allowed the robot to move in a 25  ×  25  ×  25 cm3 
workspace. Although the largest observed peering 
motions (figure 5) were bounded in a 10 cm-edged 
cube, the robot’s extent was defined wider so as to 
allow additional types of active vision motions. The 
next two links in the robot’s serial kinematic chain 
enabled yaw and pitch rotations, so that the depth 
camera was always maintained oriented towards the 

Figure 1.  Barn owl with the head-mounted device (A), sample peering trajectory recorded by vicon system (B) and graphical user 
interface used for the segmentation of peering motions (C). The device supports a miniature wireless camera for capturing the scene 
as seen by the bird and five motion capture markers for accurate tracking of the head motions and, hence, of the owl’s gaze up to 
small eye movements. The device is rigidly attached to the head by means of a bolt preliminarily glued onto the bird’s skull which 
can be adjusted to any bird in a reproducible way. A typical peering motion is presented in (B) in a local coordinate system obtained 
from averaging the local axes over the trajectory. While the side-to-side motion pattern is generally apparent when viewed from atop, 
peering motions can cover large areas in the image plane (front view). A matlab code was developed (C) for playing a video recording 
of the owl’s head motions and presenting an animation of the marker 3D trajectories (left) and of the graphs of the computed 
kinematic parameters with the time cursor in red advancing synchronously (right). The velocity graphs present peering samples 
(with low angular (ω) and high translational (V) velocities) in magenta. Peering motion candidates are automatically identified as 
quasi-continuous sequences of peering samples (enclosed by the black triangles).
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target object. Although the Kinect has a motorized tilt 
angle of  ±27°, this degree of freedom was replaced 
for centralized and customized control. Rotations 
around the roll axis were considered unlikely to 
improve the quality of reconstructions. The camera 
holding support was designed to maintain the camera 
horizontally level at all times. The precision was set as 
0.25 mm for the linear motion and 2° for the angular 
motion.

An Arduino MEGA 2560 microcontroller transmit-
ted the commands received from the workstation by 
USB serial connection to the servo motors via a similar 
Arduino board by inter-integrated circuit (I2C) com-
munication, in a master/slave configuration, allowing a 
task-oriented partition of the microcontroller boards. 

The master board also managed the commands to the 
stepper motors via motor drivers, and the incoming 
signals from the limit switches enabling the homing 
process and ensuring legitimate motion of the robot in 
the delimited workspace, and from the user interface, 
such as the stop button.

At initialization, the trajectory extracted in Matlab 
was loaded as an ASCII list of spatial points. After some 
level of preprocessing aimed at formatting the data for 
the robot (downsampling, conversion from millimeters 
to microsteps, speed computation, etc), the trajectory 
was sent as a whole to the microcontroller once the 
robot signaled completion of the homing procedure. 
The computer agent then waited for the robot to get 
into position to start the main loop.

Figure 2.  Gaze direction and velocities in peering (A) and non-peering (B) trajectories. The device center’s trajectory is represented 
as the bold black line in (A) and (B). The manifold is the combination of the different gaze directions over time drawn 50 mm 
from that curve, from blue to red. The velocities of the depicted peering and non-peering motions are displayed in (C) and (D), 
respectively. The thresholds of 30 mm s−1 and 10° s−1 appear in red, defining the quadrants of fixation (bottom left), peering 
(bottom right), rotation (top left) and mixed motion (top right) samples [18]. The proportion of the motion spent in these regions is 
represented by the percentage value within each quadrant.

Table 1.  Extracted peering motions—summary.

Owl

Recording  

duration 

(min)

Number of  

peering  

motions

Total peering 

duration  

(min:s)

Average peering 

duration (s)

Average peering 

distance (mm)

Peering  

motions  

replicated on 

the robot

Ada 24 20 0:30 1.51  ±  0.85 81.3  ±  50.9 2

Shimi 26.5 69 1:28 1.27  ±  0.85 65.2  ±  60.9 4

Charm 28.5 118 2:28 1.25  ±  0.84 55.9  ±  58.1 13

Overall 79 207 4:26 1.28  ±  0.85 61.5  ±  58.6 19

Bioinspir. Biomim. 12 (2017) 056004
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As the robot started performing the transmitted tra-
jectory, the 3D reconstruction procedure was initiated. 
No communication was required at that stage between 
the microcontroller and the PC, until completion of the 
trajectory. For that reason, a multi-threaded approach 
was adopted on the PC software agent. The first thread 
was responsible for regularly fetching images from the 
Kinect and updating the reconstruction with KinectFu-
sion [26, 27]. The second thread continuously checked 
the communication stream in search of the trajectory 
completion signal. Once this signal was perceived on the 
PC, the communication thread terminated the recon-
struction thread and continued with output process-
ing. The PC software agent was implemented in C++, 
with use of the Point Cloud Library providing KinFu: 
an open-source GPU implementation of KinectFusion 
in CUDA. The code was executed on a Toshiba Qos-
mio laptop (i7-3630QM @2.40 GHz, 8Gb DDR3 RAM, 
NVIDIA GeForce GTX 670 M), at a rate of 8fps.

Scan accuracy evaluation
Different objects were placed at a distance of one 
meter in front of the robot and several trajectories 
were executed for each of the objects. The models were 
scaled to reach a height of 30 cm. At that distance, the 
Kinect for Xbox 360, with an angular field of view of 
57° horizontally and 43° vertically, was able to see 
the models entirely at all times. The first model was 
specifically designed to test the accuracy of the selected 
reconstruction method KinectFusion, and included 
holes of diameters ranging from 0.5 mm to 4 cm (figure 
6(A)). Both front and back faces presented different 
semi-spherical cavities and conical holes to provide 
a rich specimen of geometric primitives on which 
the robot’s scan accuracy could be checked. In the 
produced point clouds, holes with diameters smaller 
than 2 cm were hardly observable. A spherical model 
(figure 6(B)) was also produced by rapid prototyping 
to produce scan results on a uniform model. The 

Figure 3.  Velocity graphs for each of the three perching and freely viewing owl subjects. Charm (A), Ada (B) and Shimi (C). The 
translational velocity V is plotted on the x-axis, the rotational velocity V is plotted on the y-axis. The graphs present head velocities 
occurring during the whole duration of the recording sessions: 21–28 min for each subject at a sampling frequency of 120 Hz. Each 
point in the graph represents the angular and linear velocity components of one sample in a logarithmic scale. The threshold values 
of 30 mm s−1 and 20° s−1 (displayed in red) helped categorizing the samples into four regions (low/high amounts of translation/
rotation): fixations, peering motions, pure rotations and mixed rotations. The proportions of samples in each of the quadrants are 
displayed in the graphs.

Figure 4.  Barn-owl-inspired active vision robotic system (A). The robot manipulates a kinect depth camera with five degrees 
of freedom (excepting roll motion). While performing trajectories with the depth camera, the robot executed the KinectFusion 
reconstruction algorithm to produce a 3D point cloud of the observed scene. The robot scanned static objects placed one meter in 
front of it (B).

Bioinspir. Biomim. 12 (2017) 056004



6

O Barzilay et al

principal model on which the final accuracy of the 
robot was tested was the Happy Buddha statuette from 
the Stanford model repository (figure 6(C)). This 
model is very popular in the fields of computational 
geometry and computer graphics, as it is composed 
of free-form surfaces with a wide range of levels of 
details. After scaling it to a 30 cm height, the model 
was printed by rapid prototyping and painted. The 
paint coating greatly improved scan accuracy as the 
rapid prototyping material used was translucent and 
scattered the infrared light emitted by the Kinect 
camera, making the object virtually invisible to the 
camera. This property of the material was made 
useful by leaving the pedestal supporting the models 
unpainted, rendering the scanned target model easier 
to segment from the rest of the scenery (figure 6(A)).

For execution on the robot, the trajectories recorded 
in the Vicon motion capture system at 120 Hz needed 
to be downsampled to a rate more suitable to the hard-

ware limitations but with minimal loss of information. 
Each dozen samples were averaged to reach a rate of 10 
Hz, providing an acceptable trade-off between hard-
ware capabilities and trajectory accuracy. Additionally, 
the trajectories were stretched to durations of 5.5–6.0s 
to allow the capture of 26 depth frames exactly, allow-
ing KinectFusion to produce a dense point cloud. As 
KinectFusion relies on the iterative closest point (ICP) 
method for fitting the data arriving from the last frame 
to the previously scanned model and for estimating the 
camera pose, tracking occasionally failed during scans. 
Only scans where ICP had not failed once were con-
sidered.

After scanning, the produced point clouds required 
post-processing for isolating the object of interest 
from the scan of the scene and comparing it to the ref-
erence 3D model. The processing of the point clouds 
obtained from the different scans was performed by 
means of CloudCompare, a software package allowing 

Figure 5.  The 19 peering motions replicated on the robot. The peering trajectories are represented in the image plane (normal to 
the average gaze direction along the trajectory), with the gaze direction drawn 50 mm from the curve, from blue at start to red at end. 
The scale is uniform for all trajectories and is given in the bottom right corner.

Figure 6.  The CAD models used in scan evaluation. The holey block (A), the ball (B), and Stanford’s happy Buddha (C).

Bioinspir. Biomim. 12 (2017) 056004
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the segmentation of an object and its alignment and 
comparison with another reference model.

The point cloud post-processing workflow is 
depicted in figure 7. As the produced point cloud rep-
resents a 3D model of the entire scene, the object of 
interest first needed to be segmented out. CloudCom-
pare allows visualization and editing of point clouds, 
and particularly extracting the model of interest by  
selecting polyline regions on different views and dis-
carding irrelevant points. After insertion of the 3D 
model used to print the scanned object, the two mod-
els were aligned one to the other. This was done in two 
steps, a coarse registration followed by a fine registra-
tion. The fine registration is based on ICP, a state-of-
the-art alignment method known to strongly rely on 
the preliminary coarse alignment. The coarse registra-
tion was performed by aligning the principal axes and 
then by making the centroids of the clouds’ bounding 
boxes coincide. ICP registration was performed several 
times thereafter for improved alignment accuracy, until 
the error stabilized.

Once the models were finely aligned, the produced 
point cloud could be evaluated. The reference model 
was sampled to produce a dense point cloud with one 
million points. The evaluation of the scanning trajec-
tory was then performed by computation of the cloud-
to-cloud distance between the output cloud and the 
model. The cloud-to-cloud distance was computed 
based on the evaluation, for each point of the scanned 
cloud, of the distance to its nearest neighbor in the ref-
erence model (figure 7).

Results

Although scans obtained from the peering trajectories 
were globally more accurate by 4.11% (from 
1.85  ±  0.13 mm for peering motions to 1.925  ±  0.03 mm 
for basic trajectories), statistical significance was not 
achieved for the Ball model scans (p  =  0.12). However, 
if two outliers among the 19 peering motions were 
discarded (trajectories #6 and #7, yielding an average 
error of 1.82  ±  0.11 mm for peering motions), the 

Figure 7.  Point cloud post-processing pipeline. The image at the top displays an example of raw point cloud produced by 
KinectFusion while polyline region segmentation is being performed. The following images present the output of each processing 
block: the third image shows the ICP parameter window and the coarsely registered clouds, the fourth image shows the finely aligned 
clouds and the scanned cloud after cloud-to-cloud distance computation. The point clouds in the last two images are color-coded 
according to nearest neighbor distance, from blue to red. The histograms in these images show the distribution of that distance in the 
cloud.

Bioinspir. Biomim. 12 (2017) 056004
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accuracy improvement of barn owls peering-inspired 
motions over the control group increased to 5.25% 
(p  =  0.04). The omitted trajectories were the ones 
presenting the highest discrepancies over the three scan 
repetitions, in addition to relatively high deviations 
from the reference ball model. In a general manner, the 
scan accuracy achieved in this study with the Kinect 
for Xbox 360 and KinectFusion compares fairly with 
the results found in the literature for similar scenes 
[28, 29]. Nonetheless, our focus was set on accurately 
reproducing the same methods for the biomimetic and 
basic trajectories for the sake of comparison.

The results of the scan accuracy analysis on the 
Ball model were less conclusive than the results on the 
Happy Buddha model. For the Happy Buddha model, 
the average scan accuracy of the intuitive scanning 
trajectories (n  =  4, three repetitions each, see blue 
curves in figure 8(A)) was 1.71  ±  0.03 mm (mean  ±   
standard deviation). The peering motions (n  =  19, 
three repetitions each) presented an average accuracy 
of 1.60  ±  0.10 mm (figure 8). In other words, mov-
ing the camera along peering motions recorded from 
barn owls produced an average improvement in scan 
accuracy of 6.1% compared to the control group of 
intuitive scanning trajectories. A Wilcoxon rank-sum 
test [30] was performed to evaluate the statistical sig-
nificance of the difference in scan accuracy observed 
between peering motions and reference motions. The 
improvement of scan accuracy from execution of peer-
ing trajectories with the camera was statistically signifi-
cant (p  =  0.0001).

Discussions

While the peering motions provided greater accuracy, 
they generally provided less coverage than the reference 

motions. Scans with motions in the control group 
provided, after segmentation, point clouds including 
8304  ±  243 points while peering scans produced clouds 
of 7778  ±  379 points. It is reasonable to assume that the 
peering motions could not improve both scan accuracy 
and coverage of the object of interest, especially when 
the motions of the control group had extents larger 
than the extent of the largest peering motion.

The peering trajectories were 3D, while the refer-
ence motions were planar trajectories. Peering motions 
were generally restricted to an extent of 4 cm within the 
image plane, but often included motion along the gaze 
direction with an average extent of 1.5 cm, (and 2.4 cm at 
most, but the gaze direction was never the principal axis 
of motion). Although motions toward the line of sight 
are not believed to improve depth estimation, their influ-
ence on scan accuracy could be assessed by scanning with 
peering motions projected onto the average image plane.

Conclusions

The results obtained in this study support the evidence 
that peering motions can improve depth estimation 
in artificial systems, not only at depth discontinuities 
but also in the observation of fine details. Similarly, 
it is reasonable to assume that, with these slight head 
movements, barn owls achieve a general finer scan 
resolution, rather than solely observe depth anomalies 
between the prey’s contour and the background.

In this study, we showed that the peering-inspired 
manipulation of a depth camera within a restricted 
space could improve scan accuracy on static objects. 
Additionally to supporting the evidence that peering 
motions enrich the scanning capabilities of barn owls, 
this finding suggests that manipulation of the visual 
sensor of a robot with miniature peering-inspired 

Figure 8.  Scan accuracy analysis. The scans obtained from the camera’s peering trajectories were compared to basic yet intuitive 
scanning trajectories to an extent greater than the largest peering trajectory, displayed at the center of each graph for comparison 
(A). The Θ-trajectory was a circular motion with a horizontal pass over the diameter, for greater coverage than the O-trajectory. The 
Z- and Σ-trajectories induced motion parallax, similar to peering motions. The 3D models produced from the scans of the happy 
Buddha statuette were compared to the original model, producing an evaluation criterion for each scan. The reconstruction errors 
of the three scans performed with each of the four basic trajectories and the 19 peering motions (ordered as in figure 5) are displayed 
in (B).
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trajectories, in combination with models of selective 
attention [31] and navigation capabilities, may enhance 
the vision of autonomous robots.
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